

"redefining the limits of ultrasound"

### Non-Contact Ultrasonic Inspection for Continuous Feedback in Manufacturing

JEC Europe Paris

March 12, 2013



the ultran group

We will explore non-contact ultrasound (NCU), the advantages of continuous inspection and applicability of NCU to composite analysis

| <u>iopic Agenaa</u> |                                                            |                                                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Non-Contact<br>Ultrasound (NCU)                            | <ul> <li>Significant advancements in non-contact ultrasound now allow for<br/>analysis of composite and other materials in the early stages to final<br/>stags of their formation</li> </ul>                             |
| 2                   | Continuous Inspection<br>in Production                     | <ul> <li>Continuous feedback in production has tremendous benefits for waste<br/>reduction, process enhancement, and product improvement</li> </ul>                                                                      |
| 3                   | Correlation of NCU<br>Amplitude to Material<br>Properties  | <ul> <li>A relationship can be established to correlate the material property of<br/>interest with ultrasonic measurements</li> </ul>                                                                                    |
| 4                   | Applying NCU for<br>Continuous Inspection<br>in Production | <ul> <li>Application of NCU to continuous production allows for a safe, reliable,<br/>and relatively inexpensive way to save money, improve manufacturing<br/>and performance, and gain competitive advantage</li> </ul> |

#### Topic Agenda



# Significant advancements in non-contact ultrasound allow for high performance and widespread applicability



#### **Elements of Non-Contact Transducers\***





\*US and International Patents



Through transmission is the most applicable and robust method of non-contact analysis





For most analyses in non-contact ultrasound, it is easiest to use the direct transmission route



1 Ultrasonic Amplitude

The key ultrasonic measurement through non-contact through transmission is attenuation or transmittance

**Transmittance in Material**, T<sub>m</sub> (dB)\*

$$T_m = T_c - T_a$$

 $T_c$  (dB) transmission in air + material  $T_a$  (dB) transmission in air column



Material Transmittance is related to material texture, Z, homogeneity, and other physical characteristics





### Material Velocity is often directly related to material density

Material Velocity, V<sub>m</sub> when thickness is known



#### Material Velocity, V<sub>m</sub> when thickness is unknown



t<sub>1</sub> round trip tof from transducer 1  $t_{am} = t_a - \left(\frac{t_1 + t_2}{2}\right)$  to materials surface  $t_2$  round trip tof from transducer 2 to material surface

### \*Material Velocity Equivalent, V<sub>e</sub> when thickness is known

 $V_e = \frac{d_m}{\delta t} \qquad \qquad \delta_t = t_a - t_c \\ \text{*Indirectly proportional to V}_m$ Easy to measure, does not require air/gas velocity



the ultran group



n group

# Closing the loop on a manufacturing process allows for instant feedback and process control



- Can make adjustments during process to remain within control limits
- Enables continuous process improvement
- Provides further product information and creates opportunity for product improvement
- Allows for 100% inspection of manufactured product
  - -Identify regions of defective material
  - -Certification of sold product



# Non-Contact Ultrasound can measure key material properties in many composite materials

- Prepreg: Carbon Fiber, Glass Fiber, etc...
- CFRP & GFRP
- Honeycomb Sandwich structures
- Nomex core and aluminum core with composite & Al skins
- Carbon-Carbon composites
- -Autoclave oven fixtures
- Disk Brakes (aircraft and automobile)
- Foam Core sandwich structures





## Using a bench-top C-Scan system, we can characterize various composite materials



#### System Features

- Tone-burst pulser up to 375V, with frequency range from 50 kHz to 1 MHz
- 4-channel receiver up to 84 dB gain
- Software features:
  - Cross-sectional profiles for quantitative analysis
  - Absolute transmittance and reflectance measurements
  - Palette selection for easy accept-reject limits
  - Parametric correlation of acoustic vs. material characteristics
- -Statistical Quality Control
- –Numerous features for detailed localized region analysis
- –X-Y Scanning capability can be provided at customer request (various sizes available)

**ID** 



### The below composite section demonstrates bonded and disbonded regions detected by NCU

#### C-Scan and Line Scan Images of CFRP-GFRP Cylindrical composite section (19mm thick)







- 1. Complete disbond across top region of part
- 2. Well-bonded area on left side with disbonded region on right
- 3. Well-bonded area on left side with disbonded region on right

an group



### Delamination can be detected within foam core structures

#### <u>C-Scan and Line Scan Images of GFRP Foam Core Sandwich Composites</u>





## Delamination between layers for carbon-carbon plates can easily be detected using NCU



#### Carbon-Carbon Plates for Oven Fixtures (~10mm thick)



## NCU can depict areas of delamination between layers of carbon-carbon disc brakes

#### Carbon-Carbon Aircraft Disk Brakes





an group

The wetness or porosity of carbon fiber prepreg can be directly correlated to ultrasonic signal amplitude in noncontact analysis

C-Scan and Line Scan Images of two Carbon Fiber Prepreg Samples of Varying Resin Content



Subtle resin content differences demonstrate significant variation in ultrasonic amplitude level - can detect <1% change



The relationship between the desired material property and ultrasonic amplitude can be formulated using statistical analysis on experimental results

#### Graphical Representation of Material Property vs. Ultrasonic Transmissivity



#### **Correlation Function**

- Transmissivity is expected to decrease as porosity increases or bond quality decreases
- Low porosity (dryer material) and disbonded layers will have high attenuation and low transmissivity



the ultran group



### A multi-channel non-contact array can continuously analyze parts or web-lines in the downstream direction

#### **Representation of Multi-Channel Array for Continuous Inspection**



continuous cross-web coverage

the ultran group



# Application of non-contact ultrasound provides a safe and reliable method of continuous inspection

#### **Brick Pattern Array for Continuous Inspection Cross-web**







## A multi-channel non-contact array can continuously analyze parts or web-lines in the downstream direction

#### **Representation of Multi-Channel Linear Array for Continuous Inspection**





Our 4-channel array pair is fully modular and can be used with mechanism for alignment in rotational axes



- 4-channel receiver array, can be built at frequencies between 50 kHz and 1 MHz
- Fully modular to allow for addition of increased number of channels
- Receiver alignment mechanism allows for adjustment in two axes of rotation
  - Alignment mechanism can be mounted to fixture across production line

the ultran group



At each channel we can continuously record the peak-to-peak amplitude across the product



Peak to Peak value is Recorded at channel at specified time intervals



# Plotting the peak-to-peak values over time, we can continuously monitor materials and products via user-friendly software



#### **Continuous Line Scans of Material**

**Features** • Continuous line scan for up to 32 or more channels simultaneously Adjustable upper and lower control limits Alarm output if readings reach limits • Y-axis units can be converted to distance or other desired units • Y-axis units can be converted via a correlation function to directly measure desired material property

the ultran group

# Non-Contact Ultrasound provides a safe and reliable method of measuring material properties during production

#### Non-Contact Ultrasound

#### Non-Contact Improvements

- High performance between 50 kHz and 5 MHz
- Capable of measuring properties of many composite materials
- Very high signal to noise ratios obtained

#### Correlation of NCU to Material of Interest

- It is relatively simple to correlate NCU data with material properties
  - For Example: Change in porosity, delamination, air gap, etc...

#### **Continuous Inspection**

#### Improve Process and Product

- Obtain data earlier during manufacturing process
- Improve process with immediate feedback
- Can improve product performance with better knowledge of manufacturing process, gaining competitive advantage

#### Waste Reduction

- Locate specific areas with defects or poor performance
- Create product maps and product certifications
- Eliminate destructive tests and need to discard untested product

### Close the Loop

- Multi-channel non-contact ultrasonic analysis is readily available
  - Products can be customized with relative ease for numerous applications
- NCU is robust, reliable, and relatively low cost
- Ultrasound is one of the safest technologies for inspection

the ultran group

# Questions?

